Rabu, 04 Januari 2012

Bab 4 Hukum Dasar dan Perhitungan Kimia


A.    Hukum Dasar Kimia
1.      Hukum Lavoisier
“Massa zat-zat sebelum dan sesudah reaksi adalah tetap”.
Contoh:
hidrogen + oksigen → hidrogen oksida
(4g)            (32g)                  (36g)

2.      Hukum Proust
Pada tahun 1799, Joseph Louis Proust menemukan satu sifat penting dari senyawa, yang disebut hukum perbandingan tetap. Berdasarkan penelitian terhadap berbagai senyawa yang dilakukannya, Proust menyimpulkan bahwa “Perbandingan massa unsur-unsur dalam satu senyawa adalah tertentu dan tetap.“ Senyawa yang sama meskipun berasal dari daerah berbeda atau dibuat dengan cara yang berbeda ternyata mempunyai komposisi yang sama.
Contohnya, hasil analisis terhadap garam natrium klorida dari berbagai daerah sebagai berikut.
Table 3.4 hasil Analisis terhadap garam dari berbagai daerah
Asal
Massa Garam
Massa Natrium
Massa Klorida
Massa Na : Cl
Indramayu
2 gram
0,786 gram
1,214 gram
1 : 1,54
Madura
1,5 gram
0,59 gram
0,91 gram
1 : 1,54
Impor
2,5 gram
0,983 gram
1,517 gram
1 : 1,54
Sebagaimana ditunjukkan dalam perhitungan di atas, bahwa perbandingan massa Na terhadap Cl ternyata tetap, yaitu 1 : 1,54. Jadi, senyawa tersebut memenuhi hukum Proust.
Table 3.5 perbandingan massa besi dan belerang pada senyawa FeS
No.
Massa Besi (Fe) yang Direaksikan
Massa Belerang (S) yang Direaksikan
Massa FeS yang Terbentuk
Perbandingan Massa Fe dan S pada FeS
1
0,42 gram
0,24 gram
0,66 gram
7 : 4
2
0,49 gram
0,28 gram
0,77 gram
7 : 4
3
0,56 gram
0,32 gram
0,88 gram
7 : 4
4
0,71 gram
0,40 gram
1,11 gram
7 : 4
Berdasarkan data tersebut ternyata perbandingan massa besi dan belerang pada senyawa besi sulfida (FeS) selalu tetap, yaitu 7 : 4.
Asal Massa Garam Massa Natrium Massa Klorida Massa Na : Cl
Indramayu 2 gram 0,786 gram 1,214 gram 1 : 1,54
Madura 1,5 gram 0,59 gram 0,91 gram 1 : 1,54
Impor 2,5 gram 0,983 gram 1,517 gram 1 : 1,54
No. Massa Besi (Fe) Massa Belerang (S) Massa FeS Perbandingan Massa yang Direaksikan yang Direaksikan yang Terbentuk Fe dan S pada FeS
1. 0,42 gram 0,24 gram 0,66 gram 7 : 4
2. 0,49 gram 0,28 gram 0,77 gram 7 : 4
3. 0,56 gram 0,32 gram 0,88 gram 7 : 4
4. 0,71 gram 0,40 gram 1,11 gram 7 : 4
Data reaksi antara hidrogen dan oksigen membentuk air, jika diketahui perbandingan massa H : O membentuk air adalah 1 : 8 sebagai berikut
Tabel3.6 data reaksi Antara hydrogen dan oksigen membentuk Air
No.
Massa Hidrogen yang Direaksikan
Massa Oksigen yang Direaksikan
Massa Air yang Terbentuk
Massa Pereaksi yang Tersisa
1
1 gram
8 gram
9 gram
-
2
2 gram
16 gram
18 gram
-
3
1 gram
9 gram
9 gram
1 gram oksigen
4
5 gram
24 gram
27 gram
2 gram hidrogen
5
10 gram
10 gram
11,25 gram
8,75 gram hidrogen



3.      Hukum Dalton
“Bila dua buah unsur dapat membentuk dua atau lebih senyawa untuk massa salah satu unsur yang sama banyaknya maka perbandingan massa unsur kedua akan berbanding sebagai bilangan bulat dan sederhana”.
Contoh:
Bila unsur Nitrogen den oksigen disenyawakan dapat terbentuk,
NO dimana massa N : 0 = 14 : 16 = 7 : 8
NO2 dimana massa N : 0 = 14 : 32 = 7 : 16
Untuk massa Nitrogen yang same banyaknya maka perbandingan massa Oksigen pada senyawa NO : NO2 = 8 :16 = 1 : 2

4.      Hukum Gay-Lussac
“Volume gas-gas yang bereaksi den volume gas-gas hasil reaksi bile diukur pada suhu dan tekanan yang sama, akan berbanding sebagai bilangan bulat den sederhana”.
Jadi untuk: P1 = P2 dan T1 = T2 berlaku : V1 / V2 = n1 / n2
Contoh:
Hitunglah massa dari 10 liter gas nitrogen (N2 ) jika pada kondisi tersebut 1 liter gas hidrogen (H2 ) massanya 0.1 g.
Diketahui: Ar untuk H = 1 dan N = 14
Jawab:
V1/V2 = n1/n2
10/1 = (x/28) / (0.1/2)
x = 14 gram
Jadi massa gas nitrogen = 14 gram.

5.      Hipotesis Avogadro
“Pada suhu dan tekanan yang sama, gas-gas yang volumenya sama mengandung jumlah mol yang sama. Dari pernyataan ini ditentukan bahwa pada keadaan STP (0o C 1 atm) 1 mol setiap gas volumenya 22.4 liter volume ini disebut sebagai volume molar gas.
Contoh:
Berapa volume 8.5 gram amoniak (NH3) pada suhu 27o C dan tekanan 1 atm ?
(Ar: H = 1 ; N = 14)
Jawab:
85 g amoniak = 17 mol = 0.5 mol
Volume amoniak (STP) = 0.5 x 22.4 = 11.2 liter
Berdasarkan persamaan Boyle-Gay Lussac:
P1 . V1 / T1 = P2 2 . V2 / T2
1 x 112.1 / 273 = 1 x V2 / (273 + 27)
V2 = 12.31 liter

B.     Stoikiometri (Perhitungan Kimia)
a. Tahap awal stoikiometri
Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar.
Salah satu contoh melibatkan teori flogiston. Flogistonis mencoba menjelaskan fenomena pembakaran dengan istilah “zat dapat terbakar”. Menurut para flogitonis, pembakaran adalah pelepasan zat dapat etrbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”. Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar. Perubahan massa kayu bila terbakar cocok dengan baik dengan teori ini. Namun, perubahan massa logam ketika dikalsinasi tidak cocok dengan teori ini. Walaupun demikian flogistonis menerima bahwa kedua proses tersebut pada dasarnya identik. Peningkatan massa logam terkalsinasi adalah merupakan fakta. Flogistonis berusaha menjelaskan anomali ini dengan menyatakan bahwa flogiston bermassa negatif.
Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.
Di akhir abad 18, kimiawan Jerman Jeremias Benjamin Richter (1762-1807) menemukan konsep ekuivalen (dalam istilah kimia modern ekuivalen kimia) dengan pengamatan teliti reaksi asam/basa, yakni hubungan kuantitatif antara asam dan basa dalam reaksi netralisasi. Ekuivalen Richter, atau yang sekarang disebut ekuivalen kimia, mengindikasikan sejumlah tertentu materi dalam reaksi. Satu ekuivalen dalam netralisasi berkaitan dengan hubungan antara sejumlah asam dan sejumlah basa untuk mentralkannya. Pengetahuan yang tepat tentang ekuivalen sangat penting untuk menghasilkan sabun dan serbuk mesiu yang baik. Jadi, pengetahuan seperti ini sangat penting secara praktis.
Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.
b. Massa atom relatif dan massa atom
Dalton mengenali bahwa penting untuk menentukan massa setiap atom karena massanya bervariasi untuk setiap jenis atom. Atom sangat kecil sehingga tidak mungkin menentukan massa satu atom. Maka ia memfokuskan pada nilai relatif massa dan membuat tabel massa atom (gambar 1.3) untuk pertamakalinya dalam sejarah manusia. Dalam tabelnya, massa unsur teringan, hidrogen ditetapkannya satu sebagai standar (H = 1). Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Walaupun beberapa massa atomnya berbeda dengan nilai modern, sebagian besar nilai-nilai yang diusulkannya dalam rentang kecocokan dengan nilai saat ini. Hal ini menunjukkan bahwa ide dan percobaannya benar.
http://www.chem-is-try.org/wp-content/migrated_images/pengantar/pengantarkimia-terjemah_img_4.jpg
Kemudian kimiawan Swedia Jons Jakob Baron Berzelius (1779-1848) menentukan massa atom dengan oksigen sebagai standar (O = 100). Karena Berzelius mendapatkan nilai ini berdasarkan analisis oksida, ia mempunyai alasan yang jelas untuk memilih oksigen sebagai standar. Namun, standar hidrogen jelas lebih unggul dalam hal kesederhanaannya. Kini, setelah banyak diskusi dan modifikasi, standar karbon digunakan. Dalam metoda ini, massa karbon 12C dengan 6 proton dan 6 neutron didefinisikan sebagai 12,0000. Massa atom dari suatu atom adalah massa relatif pada standar ini. Walaupun karbon telah dinyatakan sebagai standar, sebenarnya cara ini dapat dianggap sebagai standar hidrogen yang dimodifikasi.
C.     Konsep Mol
Saat kita membeli apel atau daging kita selalu mengatakan kepada penjual berapa kilogram yang ingin kita beli, demikian pula berapa liter saat kita ingin membeli minyak tanah. Jarak dinyatakan dalam satuan meter atau kilometer. Ilmu kimia menggunakan satuan mol untuk menyatakan satuan jumlah atau banyaknya materi.

Hubungan Mol dengan Tetapan Avogadro

Kuantitas atom, molekul dan ion dalam suatu zat  dinyatakan dalam satuan mol. Misalnya, untuk mendapatkan 18 gram air maka 2 gram gas hidrogen direaksikan dengan 16 gram gas oksigen.
A.    2H2O  +  O2 → 2H2O
Dalam 18 gram air terdapat 6,023×1023 molekul air. Karena jumlah partikel ini sangat besar maka tidak praktis untuk memakai angka dalam jumlah yang besar. Sehingga iistilah mol diperkenalkan untuk menyatakan  kuantitas  ini.  Satu  mol  adalah  jumlah  zat  yang mangandung partikel (atom, molekul, ion) sebanyak atom yang terdapat dalam 12 gram karbon dengan nomor massa 12 (karbon-12, C-12). Jumlah  atom  yang  terdapat  dalam 12  gram  karbon-12 sebanyak 6,02×1023 atom C-12. tetapan ini disebut tetapan Avogadro.
B.     Tetapan Avogadro (L) = 6,02×1023 partikel/mol
Lambang L menyatakan huruf pertama dari Loschmidt, seorang ilmuwan austria yang pada tahun 1865 dapat menentukan besarnya tetapan Avogadro dengan tepat. Sehingga,
1 mol emas       = 6,02×1023 atom emas
1 mol air           = 6,02×1023 atom air
1 mol gula         = 6,02×1023 molekul gula
1 mol zat X        = L buah partikel zat X

Hubungan Mol dengan Jumlah Partikel

Telah diketahui bahwa 1mol zat X = l buah partikel zat X, maka
2 mol zat X        = 2 x L partikel zat X
5 mol zat X        = 5 x L partikel zat X
n mol zat X        = n x L partikel zat X
Jumlah partikel = n x L
Contoh soal:
Berapa mol atom timbal dan oksigen yang dibutuhkan untuk membuat 5 mol timbal dioksida (PbO2).
Jawab :
1 mol timbal dioksida tersusun oleh 1 mol timbal dan 2 mol atom oksigen (atau 1 mol molekul oksigen, O2). Sehingga terdapat
Atom timbal      = 1 x 5 mol = 5 mol
Atom oksigen    = 2 x 5 mol = 10 mol (atau 5 mol molekul oksigen, O2)

C.    Volume Molar
Avogadro mendapatkan hasil dari percobaannya bahwa pada suhu 0°C (273 K) dan tekanan 1 atmosfir (76cmHg) didapatkan tepat 1 liter oksigen dengan massa 1,3286 gram. Maka,
rm33
Karena volume gas oksigen (O2) = 1 liter,
rm43
Pengukuran dengan kondisi 0°C (273 K) dan tekanan 1 atmosfir (76cmHg) disebut juga keadaan STP(Standard Temperature and Pressure). Pada keadaan STP, 1 mol gas oksigen sama dengan 22,3 liter.
Avogadro yang menyata-kan bahwa pada suhu dan tekanan yang sama, gas-gas yang bervolume sama mengandung jumlah molekul yang sama. Apabila jumlah molekul sama maka jumlah molnya akan sma. Sehingga, pada suhu dan tekanan yang sama, apabila jumlah mol gas sama maka volumenyapun akan sama. Keadaan standar pada  suhu dan tekanan yang sma (STP) maka volume 1 mol gas apasaja/sembarang berharga sama yaitu 22,3 liter. Volume 1 mol gas disebut sebagai volume molar gas (STP) yaitu 22,3 liter/mol.

Tidak ada komentar:

Posting Komentar